Introduction to Classical Partial Differential Equations

Speaker: Prof. Horst R. Beyer.
Language: English-Spanish
Registered participants will receive an MCTP Diploma.

Date and Time

May 22-24 2017. 09:00 am.

Event venue

Sala de Usos Múltiples de la Facultad de Ciencias en Física y Matemáticas (UNACH),
Ciudad Universitaria Carretera Emiliano Zapata Km. 8, Real del Bosque (Terán).
Tuxtla Gutiérrez, Chiapas, México.

Sponsors

MCTP, CONACYT, UNACH y FCFM-UNACH.

Organizers

Dra. Karen Salomé Caballero Mora.
Dr. Sendic Estrada Jimenez

Summary

Teaching of basic hyperbolic partial differential equations needed in applications, Including the construction of the solutions using characteristic methods. Discussion of associated initial-boundary-value problems and their well- posedness. Classification of partial differential equations into hyperbolic, parabolic and elliptic equations.

Program

Day 1, 3 hours
First-Order Quasi-Linear PDE for One Real-Valued Function
  • The Linear Case
  • Integral Curves of Vector Fields
  • The Linear Case
  • Characteristic Surfaces
  • The Quasi-Linear Case
  • Incompressible Euler’s Equations in One Space Dimension Day


  • Day 2, 3 hours
    Systems of Quasi-Linear PDE
  • Linear Symmetric Hyperbolic Systems
  • Compressible Euler’s Equations in One Space Dimension
  • Hyperbolic Systems
  • The Inhomogeneous Wave Equation in One Space Dimension


  • Day 3, 3 hours
    Second-Order PDE for One Unknown Function
  • Classification of Quasi-Linear Second-Order PDE
  • Second-Order Equations With Constant Coefficients
  • Main Examples of Hyperbolic Equations
  • The Wave Equation in Three Space Dimensions
  • The Wave Equation in Two Space Dimensions
  • Inhomogeneous Wave Equations
  • Conservation Laws for Wave Equations
    UNACH/MCTP, Ciudad Universitaria
    Carretera Emiliano Zapata Km. 4,
    Real del Bosque (Terán).
    Tuxtla Gutiérrez, Chiapas, México.
    C. P. 29050
    Teléfono 52 (961) 617-80-00
    Ext. 8200 y 1380
    mctp@unach.mx
    © 2013 MCTP
    Desarrollado por MCTP