Observational Clues of Galactic Cosmic Rays

in X-ray point of view

Aya Bamba
(Aoyama Gakuin Univ., Japan)
0. 1. Galactic cosmic rays

SNR as Galactic cosmic ray accelerator
- enough energy, heavy elements
- sync. X-rays, gamma-rays from MeV to TeV

Remaining Problems

(1) Injection from thermal to nonthermal

(2) what determine E_{max}
how to accelerate particles up to which energy?

(3) escape from acc. region
to be cosmic rays p? e$^+$e$^-$?
0.2. How to get information?

- **X-ray:**
 - synchrotron from e
 - thermal emission
 - info. on accelerated e
 - info. on density, kT, ...

- **gamma-ray:**
 - IC emission from e
 - emission from pi-on
 - info. on accelerated e/p

X-ray observations are important to know accelerated particles and background plasma!
0.3. Recent and near future X-ray observatories

Chandra
excellent spatial resolution
filament structure, time evolution ...

XMM-Newton
large effective area
spectroscopy of faint sources

Suzaku
low background, wideband detector
detection of faint and extended sources

NuStar
imaging at 10-80 keV
good for hard sources (FOV is small)
ASTRO-H (planned to launch 2015)
- excellent spectral resolution for extended sources
- wideband spectroscopy from 0.2-600 keV
- imaging capability in 10-80 keV

we have (and will have) a lot of useful information with present and near future X-ray missions
1. Injection
from thermal plasma to nonthermal particles
1.1. How to observe the injected energy from thermal plasma to high energy particles

From Rankine Hugoniot relation

- Efficient particle acceleration steal energy from the thermal energy of downstream plasma
- We need excellent spectral resolution to measure ion kT
Injection efficiency measured from ion kT
obs. of ejecta knots in SNRs
-> Doppler shift + thermal broad

In the case of Puppus A Oxygen
Doppler v ~ 1500km/s
expected O kT ~ 130 keV
<-> observed O kT < 30 keV
(XMM RGS; Katsuda+13)
due to non-equilibrium? or energy injection? (Katsuda+13)
In the case of non ionization equilibrium effect, the ratio of kT increase following the mass of elements.

In the case of injection, the ratio of kT follows the TIGER result or same among elements?

-> *It should be determined with ASTRO-H!*

excellent E resolution for diffuse sources
large effective area in wide X-ray band

-> determine the ratio of kT for several elements

-> measure the E injection?
1.2. Environment of cosmic ray acceleration

Why only a part of SNRs have synchrotron X-rays?
Is there any environment of shocks for easier acceleration?

Key target: RCW86

position dependence of thermal and nonthermal X-rays

regions w. bright thermal X-rays has smaller photon index ??

Some clue of efficient particle acceleration site (Tsubone+, in prep.)
Non-thermal X-ray dominated SNRs

Bright TeV SNRs have no significant thermal X-rays
thermal X-ray luminosity $\sim n_e^2$ -> background plasma is thin ??
pulsar candidate -> core-collapsed SNRs ?
expanding in low density cavity ?
2. Acceleration mechanism from wide band spectrum
2.1. Change of CR spectrum

w. various acc. efficiency or escape parameters

CR spectrum:

\[N(E) \propto E^{-p} \exp \left[- \left(\frac{E}{E_{\text{max}}},e \right)^a \right] \]

only 3 parameters!

- \(p \): photon index
- \(a \): cutoff shape
- \(E_{\text{max}} \): maximum energy of particles

\(p \): test particle case: \(\rightarrow p=2 \)

w. efficient synchrotron cooling: \(p=3 \) at \(E_{\text{max}}>E \)

\(\text{(Longair84)} \)

\(\leftrightarrow \) Tycho, Cas A: \(p>2 \)? (Abdo+10)

\(a \): depend on what determine \(E_{\text{max}} \)

- \(a=\beta+1 \) in cooling limit (Yamazaki+13)
- \(a=2\beta \) in age limit (Kang+09)
- \(a=\beta \) in escape limit (Ptuskin+05, Yamazaki+13)

\(\beta \): diffusion coefficient \(K(E) \sim E^\beta \)
How to determine \(p \), \(a \), and \(E_{\text{max}} \)?

CR: \[N(E) \propto E^{-p} \exp\left[-(E/E_{\text{max}})^a \right] \]

synchrotron emission with magnetic field

for \(p \):
- power-law with \(s = (p-1)/2 \)
- below cut-off
- radio obs. will determine \(p \)

for \(a \) and \(E_{\text{max}} \):
- slow slope around X-ray band

We need wide band E coverage to determine \(a \) and \(E_{\text{max}} \)

-> Nustar / ASTRO-H!
Photon index comparison in various parameters

Wide band obs. will enable us to distinguish what makes the cut off

(Yamazaki+14)
better sensitivity
-> better distinction
of models

\[R_I = \frac{F(10-30 \text{ keV})}{F(30-80 \text{ keV})} \]

(Yamazaki+14)
Photon index comparison in various parameters

RXJ 1713-3946
(Suzaku: Tanaka+08)
p is not determined (no radio obs.)

week B (week sync. cooling): failed
(Katz & Waxman08)
a>2, beta>1 (Bohm limit !)

strong B (strong sync. cooling):
(Yamazaki+14)
Photon index comparison in various parameters

We need more samples with Nustar / ASTRO-H!

Cas A
(Suzaku: Maeda+09)

No theoretical line!!
Not one-zone??
hard X-rays are not sync.?? (Vink08)
(3) escape from acc. region to be cosmic rays
3.1. escape from shocks of SNRs

Particles have to escape from SNRs to be cosmic rays!
- SNRs detected with Fermi has the cutoff E of ~ 10 GeV
- The most famous accelerator, RXJ1713 (age ~ 2000 yrs) has cutoff around TeV (Aharonian+07)

\Rightarrow

High E particles are already escaped?

(Funk 11)
Non-thermal X-ray luminosity starts to decrease within ~100 yrs

(Nakamura+12)

(already escaped/cooled ??)
Excellent example: NE shell of W28

TeV emission from MC escaping particles?

Colliding w. MC! (OH mesar)

Thermal X-ray knots -> lap time from collision to escape?? (XMM could not measure the age of the plasma)

GeV+TeV from shocked MC softer particle escaping?

ASTRO-H will show us the time scale of escape
Old SNR + TeV gamma-rays

HESS J1745-303: TeV unID source

X-rays: no excess in continuum nearby old SNR

excess of neutral iron line -> dense matter irradiated by particles or photons

particles escaping from the SNR to be cosmic rays ??
3.2. e^+e^- escape from pulsar wind nebulae

Pulsars and Pulsar wind nebulae: possible cosmic ray origin for e^+ and e^-?
leptons loose their energy during propagation, but nearby sources can contribute.

Young Pulsars and Pulsar wind nebulae: very bright synchrotron emission -> strong B
particles loose their energy quickly

sync. loss time scale:

$$2 \left(\frac{B}{10 \mu G} \right)^{-3/2} \left(\frac{\epsilon_{\text{syn}}}{1 \text{ keV}} \right)^{-1/2} \text{ kyr.}$$
Suzaku discovered extended nebulae around middle-aged pulsars

low bgd of Suzaku/XIS -> faint and extended emission!

PSR J1420−6048 and Rabbit (Kishishita+12)

HESS J1825-137

HESS J1356-645

(Uchiyama+09)

(Izawa+, in prep.)

age of system = pulsar age t_c

-> time evolution of PWNe
Time evolution of PWNe

PWNe keep expansion at >> 2kyr !!

particle escape from the PWN system ??
magnetic turbulence dumping ?? (Bamba+10)
Or, just sampling effect ??

PWNe can brighten when reverse shock hit them (Gelfand+09)

The “evolution” discovered with Suzaku may just see “the PWNe hit by reverse shock recently” (reverberation phase; Bandiera+13)

How to judge these models ??

We need samples with SNR thermal plasma information. In order to make the hit on 10^{5-6} years, we need SNRs in very thin ISM region
New observational result to distinguish models

HESS J1536-645:
New PWN w. \(t_c = 7.3 \) kyr

thermal X-rays
 from the center
\(-\) SNR emission
density \(\sim 0.6 \) cm\(^{-3}\)

\(-\) too old and too dense
 for reverse shock
 to hit the PWN!
 (Izawa+, in prep.)

We may witness the \(e^+e^- \) escape
 from PWN systems
4. Summary

- X-ray observations are essential to study the emission from accelerated particles and background plasma.

- The injection rate, what determine the maximum E, and escaping from acc. system will be addressed with latest and near-future X-ray missions.