Kinetic modelling of pulsar magnetospheres

Benoît Cerutti

IPAG, CNRS, Université Grenoble Alpes

In collaboration with:
Sasha Philippov (Princeton), Anatoly Spitkovsky (Princeton), Jérémy Mortier (U. Grenoble Alpes)
Pulsars shine throughout the electromagnetic spectrum

A large fraction of the pulsar spindown is released in light, in particular in the gamma-ray band. => Efficient particle acceleration!

B. Cerutti
Most Galactic accelerators are pulsars

~ 100 gamma-ray pulsars

Pulsars emitting gamma rays young and ms, i.e., rotation-powered

[2nd Fermi-LAT pulsar catalog]
Pulsars are efficient particle accelerators

L_γ \sim 1-10\% Spin-down

How does the star spin-down?
How is this energy transferred to particles and radiation?

B. Cerutti
Typical gamma-ray pulsar signal

How and where are particle accelerated and radiate?

B. Cerutti

Two peaks lightcurves

Hard power-law + exponential cut-off

[2nd Fermi-LAT pulsar catalog]
Rotation of the field lines induce electric field:

$$E = \frac{R \Omega B}{c}$$

Potential difference pole/equator:

$$\Delta \Phi = \frac{R^2 \Omega B}{c} \approx 10^{16} \text{ V}$$

(for a Crab-like pulsar)
Elements of a pulsar magnetosphere: plasma filled

Dipole in vacuum is not a good model!

Copious pair creation in the polar caps

\[\Delta \Phi_{pc} = \frac{R^3 \Omega^2 B}{C^2} \approx 10^{14} V \]

Potential polar cap (Crab):

\(E.B \neq 0 \)

\(\gamma \)-B absorption

Curvature

\[\text{Dipole in vacuum is not a good model!} \]

\[\text{Copious pair creation in the polar caps} \]

\[\text{Synchrotron} \]

\[\text{\(\gamma \)-B absorption} \]

\[\text{Curvature} \]

\[\text{Potential polar cap (Crab):} \]

\[\Delta \Phi_{pc} = \frac{R^3 \Omega^2 B}{C^2} \approx 10^{14} V \]

B. Cerutti
Elements of a pulsar magnetosphere: plasma filled

- "Open" field lines
 - Outflowing plasma and Poynting flux

- "Closed" field lines
 - Plasma confined, co-rotating "Dead zone"

Magnetosphere

- Light-cylinder radius: $R_{LC} \Omega = c$
 - Here corotation is impossible!

Wind region

- Toroidal field, B_φ
 - Jump in B => Current Sheet

Rotation axis

- Similar to the heliospheric current sheet.

© Gralla & Jacobson 2014

B. Cerutti
Proposed sites for particle acceleration

Acceleration in gaps, \(E.B \neq 0 \)
\(\gamma \)-ray: curvature radiation
- Radio emission?
- \(\gamma \)-rays?
Unlikely because absorbed by B

"Polar-cap" type model

Favored by \(\gamma \)-ray observations

"Outer/slot-gap" type model

B. Cerutti
Proposed sites for particle acceleration

Particle acceleration via relativistic reconnection

\(\gamma \)-ray: Synchrotron

Models dependent on the geometry of the magnetosphere

B. Cerutti
Insight from the MHD approach
(Force Free / Resistive Force Free / Full MHD)

There is no analytical solution for the magnetosphere, need for numerical simulations!

Numerical solution of the aligned rotator
[Contopoulos et al. 1999]

Numerical solution of the inclined rotator
[Spitkovsky 2006]

Caveat: The fluid approach does not capture the microphysics (particle acceleration nor radiation)
B. Cerutti
Insight from the MHD approach
(Force Free / Resistive Force Free / Full MHD)

Ideal Force-Free field geometry with prescribed emitting field lines
Bai & Spitkovsky 2010a,b

Non-ideal Force-Free with prescribed resistivity

Favor high-energy emission from the outer magnetosphere + current sheet
Ad-hoc accelerating/radiating zones, large uncertainties
Need for self-consistent approach

B. Cerutti

PIC simulations!
The Particle-In-Cell (PIC) approach

Follow motion of millions of charged particles and evolved the electromagnetic fields

Particles evolve in continuous space

(E,B) fields known on the grid

B. Cerutti
The numerical setup: an aligned rotator (2D)

Reflecting wall

Dipole in vacuum

Injection of particles

Absorbing layer
(no plasma, λE, λ*B terms)

B. Cerutti

Philipppov & Spitkovsky 2014
Chen & Beoborodov 2014
Cerutti et al. 2015
Belyaev 2015

Light cylinder radius

B. Cerutti
Toroidal magnetic field

B. Cerutti

Cerutti et al. 2015
Global PIC simulations with discharge

Ref: Chen & Beloborodov 2014; Philippov et al., 2015

The stellar rotation impose a twist on the field lines, hence a current outside the light-cylinder. This current must be matched at the polar cap.

Electrons alone carry enough current
=> No discharge needed, no acceleration!

=> Low-multiplicity plasma (κ~1) are in contradictions with observations where κ>>1
General relativistic effects may be a way out!

Ref: Beskin 1990; Muslimov & Tsygan 1992; Sakai & Shibata 2003

Lense-Thirring frequency:

\[\omega_{LT} = \frac{2}{5} \Omega_* \frac{r_s}{R_*} \left(\frac{R_*}{r} \right)^3 \]

Frame-dragging effect reduces the stellar rotation

\[\frac{J_{\hat{r}}}{\rho_{G,JC}} \approx \left(\frac{J_{\hat{r}}}{\rho_{G,JC}} \right)_{flat} \frac{1}{1 - \omega_{LT}/\Omega_*}. \]

Significant only at the star surface, no changes at the light-cylinder!

=> Less particles are extracted from the polar cap

=> But the same current is needed

\{ Need a discharge \}

=> Particle acceleration!
2D GR PIC simulations

Development of GRPIC code [Philippov et al. 2015b] : Zeltron 3+1 GR electrodynamics

Courtesy of Sasha Philippov
2D GR PIC simulations

Time-dependent discharge of the polar-cap: **Origin of the radio emission?**

Power in stripes $W \sim 10^{-2} L_0$, enough to the observed radio emission

Courtesy of Sasha Philippov
3D PIC with radiation reaction force

Zeltron code: http://benoit.cerutti.free.fr/Zeltron/

Assumption: Large plasma supply provided by the star surface = **Efficient pair creation**

- **Radiation reaction force**
 \[
 \frac{d(\gamma m_e v)}{dt} = q \left(E + \beta \times B \right) + g,
 \]

- **Emitted radiation spectra**:
 \[
 F_\nu (\nu) = \frac{\sqrt{3} e^3 \tilde{B}_\perp}{m_e c^2} \left(\frac{\nu}{\nu_c} \right) \int_{\nu/\nu_c}^{+\infty} K_{5/3}(x) dx,
 \]
 \[
 \tilde{B}_\perp = \sqrt{(E + \beta \times B)^2 - (\beta \cdot E)^2},
 \]

- Apply for **synchrotron and curvature** radiation

B. Cerutti

- **(log(r)×\theta×\phi)**: 1024×256×256
Particle / radiation mean energy ($\chi=30^\circ$)

Cerutti, Philippov & Spitkovsky 2016

Particle acceleration via relativistic reconnection in the current sheet
High-energy radiation is synchrotron radiation

Particle energy in the sheet given by:

\[
\sigma_{\text{LC}} = \frac{B_{\text{LC}}^2}{4\pi \Gamma n_{\text{LC}} m_e c^2} \approx 50
\]

(here)

See also in 2D axisymmetric Cerutti et al. 2015
Particle / radiation spectra

Particle acceleration and emission of energetic radiation decreases with pulsar inclination

\[\nu_0 \equiv \frac{3eB_\star}{4\pi m_e c} \]

B. Cerutti

Cerutti, Philippov & Spitkovsky 2016
High-energy radiation flux ($\nu > \nu_0, \chi = 0^\circ$)

Presence of spatial irregularities due to kinetic instabilities in the sheet (e.g., kink and tearing modes, see also Philippov et al. 2015a)
High-energy radiation flux ($\nu > \nu_0$, $\chi = 30°$)

$i=30$ - Phase=0.00 - Positrons -
High-energy radiation flux ($\nu > \nu_0$, $\chi = 60^\circ$)

Small contribution from the wind regions: Could be due to reconnection induced inflow towards the sheet (Tchekhovskoy et al. 2013)
High-energy radiation flux ($\nu > \nu_0$, $\chi = 90^\circ$)

Even for the orthogonal rotator, high-energy photons are concentrated within the equatorial regions where most of the spin-down is dissipated.
Observed high-energy radiation flux \((\nu > \nu_0, \chi = 0^\circ)\)

Gray : Total flux (all directions)

Color : Observed flux

\[i = 0 - \text{Phase}=0.00 - \text{Positrons} -\]

Spatial extension of the observed emission in the sheet

\(\Rightarrow\) Formation of a **caustic**

HE flux concentrated close to the light-cylinder

Observer
Observed high-energy radiation flux ($\nu > \nu_0$, $\chi = 30^\circ$)

Gray: Total flux (all directions)

Color: Observed flux

Light curve shaped by the geometry of the current sheet

\[i = 30 - \text{Phase} = 0.00 - \text{Positrons} - \]
Two-peaked lightcurves are very generic
One peak per crossing of the current sheet

Blue: Positronic emission
Red: Electronic emission

\[\alpha = 90^\circ \] \hspace{2cm} \[\alpha = 60^\circ \] \hspace{2cm} \[\alpha = 45^\circ \]

Fermi-LAT second pulsar catalog

<table>
<thead>
<tr>
<th>[\Phi_p]</th>
<th>[\Phi_p]</th>
<th>[\Phi_p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

B. Cerutti

Cerutti, Philippov & Spitkovsky 2016
Particle acceleration and origin of the e^+ / e^- asymmetry

2D

Tracked positrons

B. Cerutti
Particle acceleration and origin of the e^+ / e^- asymmetry
Particle acceleration and origin of the e^+/e^- asymmetry

2D (aligned pulsar)
Particle acceleration and origin of the e^+/e^- asymmetry

In the co-rotating frame

Tracked positrons

B. Cerutti

Cerutti, Philippov & Spitkovsky 2016
Particle acceleration and origin of the e^+/e^- asymmetry

In the co-rotating frame

Tracked electrons
Application to the Crab pulsar

Fermi-LAT

![Graph showing counts vs. angle with peaks at 60° and 130°, labeled with ΔΦ≈0.4 and x3 magnification.]

PIC model

χ=60°, α=130°

Consistent with the nebula morphology in X-rays

[e.g. Weisskopf+2012]

B. Cerutti
(Incoherent) Polarization signature: Observations

[Graph showing polarization signature with symbols for Optical, 2PA, Polarized flux, IP, and MP.]
(Incoherent) Polarization signature : PIC

PIC model
\[\chi = 60^\circ, \alpha = 130^\circ \]

Degree of polarization : \[\Pi \approx 15-30\% \]
The Crab pulsar as we may see it!

Gray: Total flux (all directions)
Color: Observed flux

i=60 - Phase=0.00

Pulse profile
Conclusions

- **Global PIC simulations is the way to go** to solve particle acceleration in pulsars.

- **General relativity** helps at producing pairs in the polar cap, and hence at emitting *radio waves*.

- Simulations demonstrate the major role of *relativistic reconnection* in particle acceleration.

- High-energy emission could be *synchrotron radiation from the current sheet* \(\gtrsim R_{LC} \).

- **Pulse profile and polarization** provide robust constraints on Crab pulsar inclination and viewing angles.

- More work needed to **compare simulations to observations**.